3.258 \(\int \frac {x (a+b \log (c (d+e x)^n))}{f+g x^2} \, dx\)

Optimal. Leaf size=203 \[ \frac {\log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{d \sqrt {g}+e \sqrt {-f}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g}+\frac {\log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g}+\frac {b n \text {Li}_2\left (-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g}+\frac {b n \text {Li}_2\left (\frac {\sqrt {g} (d+e x)}{\sqrt {g} d+e \sqrt {-f}}\right )}{2 g} \]

[Out]

1/2*(a+b*ln(c*(e*x+d)^n))*ln(e*((-f)^(1/2)-x*g^(1/2))/(e*(-f)^(1/2)+d*g^(1/2)))/g+1/2*(a+b*ln(c*(e*x+d)^n))*ln
(e*((-f)^(1/2)+x*g^(1/2))/(e*(-f)^(1/2)-d*g^(1/2)))/g+1/2*b*n*polylog(2,-(e*x+d)*g^(1/2)/(e*(-f)^(1/2)-d*g^(1/
2)))/g+1/2*b*n*polylog(2,(e*x+d)*g^(1/2)/(e*(-f)^(1/2)+d*g^(1/2)))/g

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 203, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {260, 2416, 2394, 2393, 2391} \[ \frac {b n \text {PolyLog}\left (2,-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g}+\frac {b n \text {PolyLog}\left (2,\frac {\sqrt {g} (d+e x)}{d \sqrt {g}+e \sqrt {-f}}\right )}{2 g}+\frac {\log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{d \sqrt {g}+e \sqrt {-f}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g}+\frac {\log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )}{2 g} \]

Antiderivative was successfully verified.

[In]

Int[(x*(a + b*Log[c*(d + e*x)^n]))/(f + g*x^2),x]

[Out]

((a + b*Log[c*(d + e*x)^n])*Log[(e*(Sqrt[-f] - Sqrt[g]*x))/(e*Sqrt[-f] + d*Sqrt[g])])/(2*g) + ((a + b*Log[c*(d
 + e*x)^n])*Log[(e*(Sqrt[-f] + Sqrt[g]*x))/(e*Sqrt[-f] - d*Sqrt[g])])/(2*g) + (b*n*PolyLog[2, -((Sqrt[g]*(d +
e*x))/(e*Sqrt[-f] - d*Sqrt[g]))])/(2*g) + (b*n*PolyLog[2, (Sqrt[g]*(d + e*x))/(e*Sqrt[-f] + d*Sqrt[g])])/(2*g)

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 2393

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Dist[1/g, Subst[Int[(a +
 b*Log[1 + (c*e*x)/g])/x, x], x, f + g*x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[g
 + c*(e*f - d*g), 0]

Rule 2394

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[(Log[(e*(f +
g*x))/(e*f - d*g)]*(a + b*Log[c*(d + e*x)^n]))/g, x] - Dist[(b*e*n)/g, Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]

Rule 2416

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_))^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q
_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a,
 b, c, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]

Rubi steps

\begin {align*} \int \frac {x \left (a+b \log \left (c (d+e x)^n\right )\right )}{f+g x^2} \, dx &=\int \left (-\frac {a+b \log \left (c (d+e x)^n\right )}{2 \sqrt {g} \left (\sqrt {-f}-\sqrt {g} x\right )}+\frac {a+b \log \left (c (d+e x)^n\right )}{2 \sqrt {g} \left (\sqrt {-f}+\sqrt {g} x\right )}\right ) \, dx\\ &=-\frac {\int \frac {a+b \log \left (c (d+e x)^n\right )}{\sqrt {-f}-\sqrt {g} x} \, dx}{2 \sqrt {g}}+\frac {\int \frac {a+b \log \left (c (d+e x)^n\right )}{\sqrt {-f}+\sqrt {g} x} \, dx}{2 \sqrt {g}}\\ &=\frac {\left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 g}+\frac {\left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g}-\frac {(b e n) \int \frac {\log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{d+e x} \, dx}{2 g}-\frac {(b e n) \int \frac {\log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{d+e x} \, dx}{2 g}\\ &=\frac {\left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 g}+\frac {\left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g}-\frac {(b n) \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {g} x}{e \sqrt {-f}-d \sqrt {g}}\right )}{x} \, dx,x,d+e x\right )}{2 g}-\frac {(b n) \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {g} x}{e \sqrt {-f}+d \sqrt {g}}\right )}{x} \, dx,x,d+e x\right )}{2 g}\\ &=\frac {\left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 g}+\frac {\left (a+b \log \left (c (d+e x)^n\right )\right ) \log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g}+\frac {b n \text {Li}_2\left (-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )}{2 g}+\frac {b n \text {Li}_2\left (\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}+d \sqrt {g}}\right )}{2 g}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 172, normalized size = 0.85 \[ \frac {\left (\log \left (\frac {e \left (\sqrt {-f}-\sqrt {g} x\right )}{d \sqrt {g}+e \sqrt {-f}}\right )+\log \left (\frac {e \left (\sqrt {-f}+\sqrt {g} x\right )}{e \sqrt {-f}-d \sqrt {g}}\right )\right ) \left (a+b \log \left (c (d+e x)^n\right )\right )+b n \text {Li}_2\left (-\frac {\sqrt {g} (d+e x)}{e \sqrt {-f}-d \sqrt {g}}\right )+b n \text {Li}_2\left (\frac {\sqrt {g} (d+e x)}{\sqrt {g} d+e \sqrt {-f}}\right )}{2 g} \]

Antiderivative was successfully verified.

[In]

Integrate[(x*(a + b*Log[c*(d + e*x)^n]))/(f + g*x^2),x]

[Out]

((a + b*Log[c*(d + e*x)^n])*(Log[(e*(Sqrt[-f] - Sqrt[g]*x))/(e*Sqrt[-f] + d*Sqrt[g])] + Log[(e*(Sqrt[-f] + Sqr
t[g]*x))/(e*Sqrt[-f] - d*Sqrt[g])]) + b*n*PolyLog[2, -((Sqrt[g]*(d + e*x))/(e*Sqrt[-f] - d*Sqrt[g]))] + b*n*Po
lyLog[2, (Sqrt[g]*(d + e*x))/(e*Sqrt[-f] + d*Sqrt[g])])/(2*g)

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b x \log \left ({\left (e x + d\right )}^{n} c\right ) + a x}{g x^{2} + f}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*log(c*(e*x+d)^n))/(g*x^2+f),x, algorithm="fricas")

[Out]

integral((b*x*log((e*x + d)^n*c) + a*x)/(g*x^2 + f), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b \log \left ({\left (e x + d\right )}^{n} c\right ) + a\right )} x}{g x^{2} + f}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*log(c*(e*x+d)^n))/(g*x^2+f),x, algorithm="giac")

[Out]

integrate((b*log((e*x + d)^n*c) + a)*x/(g*x^2 + f), x)

________________________________________________________________________________________

maple [C]  time = 0.22, size = 411, normalized size = 2.02 \[ -\frac {i \pi b \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i \left (e x +d \right )^{n}\right ) \mathrm {csgn}\left (i c \left (e x +d \right )^{n}\right ) \ln \left (g \,x^{2}+f \right )}{4 g}+\frac {i \pi b \,\mathrm {csgn}\left (i c \right ) \mathrm {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} \ln \left (g \,x^{2}+f \right )}{4 g}+\frac {i \pi b \,\mathrm {csgn}\left (i \left (e x +d \right )^{n}\right ) \mathrm {csgn}\left (i c \left (e x +d \right )^{n}\right )^{2} \ln \left (g \,x^{2}+f \right )}{4 g}-\frac {i \pi b \mathrm {csgn}\left (i c \left (e x +d \right )^{n}\right )^{3} \ln \left (g \,x^{2}+f \right )}{4 g}+\frac {b n \ln \left (\frac {d g +\sqrt {-f g}\, e -\left (e x +d \right ) g}{d g +\sqrt {-f g}\, e}\right ) \ln \left (e x +d \right )}{2 g}+\frac {b n \ln \left (\frac {-d g +\sqrt {-f g}\, e +\left (e x +d \right ) g}{-d g +\sqrt {-f g}\, e}\right ) \ln \left (e x +d \right )}{2 g}-\frac {b n \ln \left (e x +d \right ) \ln \left (g \,x^{2}+f \right )}{2 g}+\frac {b n \dilog \left (\frac {d g +\sqrt {-f g}\, e -\left (e x +d \right ) g}{d g +\sqrt {-f g}\, e}\right )}{2 g}+\frac {b n \dilog \left (\frac {-d g +\sqrt {-f g}\, e +\left (e x +d \right ) g}{-d g +\sqrt {-f g}\, e}\right )}{2 g}+\frac {b \ln \relax (c ) \ln \left (g \,x^{2}+f \right )}{2 g}+\frac {b \ln \left (\left (e x +d \right )^{n}\right ) \ln \left (g \,x^{2}+f \right )}{2 g}+\frac {a \ln \left (g \,x^{2}+f \right )}{2 g} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(b*ln(c*(e*x+d)^n)+a)/(g*x^2+f),x)

[Out]

1/2*b/g*ln(g*x^2+f)*ln((e*x+d)^n)-1/2*b/g*n*ln(e*x+d)*ln(g*x^2+f)+1/2*b/g*n*ln(e*x+d)*ln((d*g+(-f*g)^(1/2)*e-(
e*x+d)*g)/(d*g+(-f*g)^(1/2)*e))+1/2*b/g*n*ln(e*x+d)*ln((-d*g+(-f*g)^(1/2)*e+(e*x+d)*g)/(-d*g+(-f*g)^(1/2)*e))+
1/2*b/g*n*dilog((d*g+(-f*g)^(1/2)*e-(e*x+d)*g)/(d*g+(-f*g)^(1/2)*e))+1/2*b/g*n*dilog((-d*g+(-f*g)^(1/2)*e+(e*x
+d)*g)/(-d*g+(-f*g)^(1/2)*e))-1/4*I/g*ln(g*x^2+f)*b*Pi*csgn(I*c)*csgn(I*(e*x+d)^n)*csgn(I*c*(e*x+d)^n)+1/4*I/g
*ln(g*x^2+f)*b*Pi*csgn(I*c)*csgn(I*c*(e*x+d)^n)^2+1/4*I/g*ln(g*x^2+f)*b*Pi*csgn(I*(e*x+d)^n)*csgn(I*c*(e*x+d)^
n)^2-1/4*I/g*ln(g*x^2+f)*b*Pi*csgn(I*c*(e*x+d)^n)^3+1/2/g*ln(g*x^2+f)*b*ln(c)+1/2*a/g*ln(g*x^2+f)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ b \int \frac {x \log \left ({\left (e x + d\right )}^{n}\right ) + x \log \relax (c)}{g x^{2} + f}\,{d x} + \frac {a \log \left (g x^{2} + f\right )}{2 \, g} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*log(c*(e*x+d)^n))/(g*x^2+f),x, algorithm="maxima")

[Out]

b*integrate((x*log((e*x + d)^n) + x*log(c))/(g*x^2 + f), x) + 1/2*a*log(g*x^2 + f)/g

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x\,\left (a+b\,\ln \left (c\,{\left (d+e\,x\right )}^n\right )\right )}{g\,x^2+f} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a + b*log(c*(d + e*x)^n)))/(f + g*x^2),x)

[Out]

int((x*(a + b*log(c*(d + e*x)^n)))/(f + g*x^2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x \left (a + b \log {\left (c \left (d + e x\right )^{n} \right )}\right )}{f + g x^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(a+b*ln(c*(e*x+d)**n))/(g*x**2+f),x)

[Out]

Integral(x*(a + b*log(c*(d + e*x)**n))/(f + g*x**2), x)

________________________________________________________________________________________